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Penalizing the new constraints

ρ multiplier known as Chain strength

Minor Embedding - Example
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[1] Nielsen, M.A., Chuang, I.L., 2010. Quantum computation and quantum information. Cambridge 
University Press.
[2] 
https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardwar
e

Solution: Make it a factor of the Q coefficients
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From our main example

And embed it into a Chimera graph 
(subgraph of the Chip)
Notice that we need to “duplicate” 
certain variables into several qubits
This step is non-trivial:
Either use heuristic methods or 
solve highly constrained problem

Minor Embedding - Example
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Before presenting the solution using QA let’s return to our example
If we enumerate all solutions for the QUBO, we obtain the following profiles

The “infeasible” solutions are heavily penalized and randomly sampling is not an 
option

Solution via Enumeration
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Using classical Simulated Annealing with the default parameters increases the  probability 

of find the optimal solution from ½^11 to 0.25 and a feasible solution to almost 1

The “infeasible” solutions are heavily penalized and randomly sampling is not an option

Solution via Simulated 
Annealing
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Using Quantum Annealing with the default parameters (annealing time, chain strength) 
results on  probability of find the optimal solution of 5/10000 and feasible of 15/10000

Solution via Quantum Annealing
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In Quantum Annealing we analyzed two different factors, the chain strength and the 
annealing time.
Our main concern is maximizing the probability of success (feasible and optimal)

Quantum Annealing tuning 
t=200μs
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In Quantum Annealing we analyzed two different factors, the chain strength and the 
annealing time.
Our main concern is maximizing the probability of success (feasible and optimal)

Quantum Annealing tuning 
t=20μs
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In Quantum Annealing we analyzed two different factors, the chain strength and the 
annealing time.
Our main concern is maximizing the probability of success (feasible and optimal)

Quantum Annealing tuning 
t=2μs
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Longer annealing times and chain strengths of the same order of magnitude as max(Q) are 
beneficial for this instance. The best embedding proved to be better than the random or full 
embeddings.

Quantum Annealing tuning
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Amazon Braket for Quantum 
Annealing

Let’s go to Amazon Braket

https://console.aws.amazon.com/braket
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https://console.aws.amazon.com/braket
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Benchmarking and parameter 
setting

13

Speedup as a function 
of problem size

▪ Provable Quantum Speedup (e.g. Grover)

▪ Strong Quantum Speedup (e.g. Shor)

▪ Quantum Speedup (potential, limited)

In the real world what you care about is 
«speedup at application scale» for your 

problem of interest.
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How to do a benchmark study
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1. Set up the quantum algorithm on the QPU 
with some initial parameters

2. Run it a number of times and process the 
performance collecting the statistics of 
distribution

3. If performance is not acceptable, use the 
distribution to choose new parameters 
(might involve processing)

→ Repeat 1-3 until satisfaction

4. Process final result and measure resource 
used (time, energy)

→ Repeat 1-4 for many benchmarking 
instances and collect distribution of 
performance.

5. Compare against best classical method on 
available hardware (time, energy)

Do you beat 
some good 
classical 
methods?

More work to do, think 
how to improve

Congrats, you achieved 
limited quantum speedup

Do you beat 
all good 
classical 
methods?

Is your performance 
so much better that it 
would be crazy to do it 
without a QC?

Congrats, you 
achieved quantum 
advantage

Congrats, you 
achieved 
quantum 
supremacy
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How to do a benchmark study
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1. Set up the quantum algorithm on the QPU 
with some initial parameters

2. Run it a number of times and process the 
performance collecting the statistics of 
distribution

3. If performance is not acceptable, use the 
distribution to choose new parameters 
(might involve processing)

→ Repeat 1-3 until satisfaction

4. Process final result and measure resource 
used (time, energy)

→ Repeat 1-4 for many benchmarking 
instances and collect distribution of 
performance.

5. Compare against best classical method on 
available hardware (time, energy)

The benchmarking question is: once I decide how 
to run, what is the quality of a solution that I can 
expect for a random new instance with a given 
confidence?
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How to do a benchmark study
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1. Set up the quantum algorithm on the QPU 
with some initial parameters

2. Run it a number of times and process the 
performance collecting the statistics of 
distribution

3. If performance is not acceptable, use the 
distribution to choose new parameters 
(might involve processing)

→ Repeat 1-3 until satisfaction

4. Process final result and measure resource 
used (time, energy)

→ Repeat 1-4 for many benchmarking 
instances and collect distribution of 
performance.

5. Compare against best classical method on 
available hardware (time, energy)
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runs for one instance

Best Value found with 
90% confidence (CDF) as 
a function of runs

The benchmarking question is: once I decide 
how to run, what is the quality of a solution that 
I can expect for a random new instance with a 
given confidence?
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How to do a benchmark study

17

1. Set up the quantum algorithm on the QPU 
with some initial parameters

2. Run it a number of times and process the 
performance collecting the statistics of 
distribution

3. If performance is not acceptable, use the 
distribution to choose new parameters 
(might involve processing)

→ Repeat 1-3 until satisfaction

4. Process final result and measure resource 
used (time, energy)

→ Repeat 1-4 for many benchmarking 
instances and collect distribution of 
performance.

5. Compare against best classical method on 
available hardware (time, energy)
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Example benchmarkings
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o Time-to-Bit-Error-Rate 10-6  (From 
“Leveraging Quantum Annealing for 
Large MIMO Processing in Centralized 
Radio Access Networks” 
https://arxiv.org/pdf/2001.04014.pdf )

o Time-to-Bit-Error-Rate 10-6  (From 
“Benchmarking a quantum annealing 
processor with the time-to-target metric” 
https://arxiv.org/pdf/1508.05087.pdf )

o Time-to-solution  (From “Demonstration 
of a scaling advantage for a quantum 
annealer over simulated annealing” 
https://arxiv.org/pdf/1508.05087.pdf )

https://arxiv.org/pdf/2001.04014.pdf
https://arxiv.org/pdf/1508.05087.pdf
https://arxiv.org/pdf/1508.05087.pdf
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Universal Quantum Computing
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A quantum computer is UNIVERSAL if its instruction set allows the implementation of any 
algorithm allowed by quantum mechanics.

The time-evolution of the Ising model in a transverse field (Quantum Annealing as implemented in 
D-Wave) is NOT universal. However the general AQC procedure is universal (need more complex Hp 
and HD).

any |ψ〉 |ψ’〉
Some quantum algo that I 
can program on the QPU

Why you might want a Universal Quantum Computer?

(1) Simulation of Quantum Systems
(2) Flexibility of implementation of multiple 

quantum algorithms (e.g. Grover/Shor)
(3) Exploit all the power of quantum mechanics
(4) Making sure that what you do is not 

classically simulatable efficiently

For quantum advantage in optimization 
heuristics, universality is not necessarily 
required (the final state we are searching 

is classical).
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Gate-Model and Quantum 
Circuits
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time

GATE

GATE GATE

GATE

The gate-model is a simple way to break down the quantum 
coherent operations we use in quantum computing.

Generic Unitary Operation on two 
qubits

U = UBC UAB |ABC〉

UAB |ABC〉 =  ψ00|00C〉 + ψ01|01C〉 + ψ10|10C〉 + ψ11|11C〉

UBC UAB |ABC〉 = ψ00 UBC |00C〉 + ψ01 UBC |01C〉 + ψ10 UBC |10C〉 + ψ11 UBC |11C〉
= ψ000|000〉 + ψ001|001〉 + ψ010|010〉 + ψ011|011〉 + ψ100|100〉 + ψ101|101〉 + ψ110|110〉 + ψ111|111〉

If we want to implement the Ising 
objective function J12 s1s2

s1 s2 → Z1⊗Z2
s1 =  1 → |0〉 
s1 = -1 → |1〉

Z1⊗Z2 |00〉 =  ψ00|00〉 + ψ01|01〉 + ψ10|10〉 + ψ11|11〉 

Reminder: every operation on a N 
qubit system is mathematically 
equivalent to multiplying a unitary 
matrix of 2Nx2N to a normalized vector.
= you cannot keep track numerically of 
the amplitudes of large circuits.
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Quantum Approximate 
Optimization Algorithm
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QUANTUM ANNEALING

▪ QAOA aims to implement (a)diabatic transitions 
coherent operations more flexibly than AQC (digitally).

▪ For infinite circuit this is at least as powerful as AQC.
▪ For finite circuit its power is unknown in general.
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Quantum Approximate 
Optimization Algorithm: Example
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Initialization 
operator

Phase separation 
operator dependent 
on a parameter γ1

 

Exercise Ry(-π/2)Rx(π)|0〉 = (|0〉+|1〉)/√2 
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exp(iβZ1Z2) |s1s2〉 = eiβs1s2 |s1s2〉

Logical 2-qubit gate representing the 
Ising interaction

mix the amplitudes by a transverse field rotation 
exp(iβX) on each qubit (arbitrary parameter)
|ψ〉mix(1)= (2n/2)-1 ∑

s 
β

1s
(β1,γ1)e

iγ1s(β1,γ1)|s〉

U
m
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U
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You need to 
schedule the 
gates for 
every term of 
the objective 
function !

Now if you measure, the probability of a bitstring 
depends both on γ and β in a non-linear way. 
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Quantum Approximate 
Optimization Algorithm: Example
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 |ψ〉qaoa(p) = (2N/2)-1 ∑
s 
Β

2s
(β1,γ1,β2,γ2,... βp,γp)eiΓ1s(β1,γ1,β2,γ2,... βp,γp)|s〉

Now if you measure, the probability of a bitstring depends both on γ 
and β in a non-linear way. 
It is exponentially difficult to predict or simulate the probability 
|Β

2s*
(β1,γ1,β2,γ2,... βp,γp)|2  to find the optimal unknown solution s*

For p=∞ you can map this evolution to AQC; discrete becomes continuous; so you know how to 
do it. For finite p there is currently not a lot of guidance, big sector of research.
The search over the parameter space γ and β is done heuristically (e.g. Gradient descent)
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QAOA QA

Recent Results: QAOA
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DARPA Optimization with Noisy 
Intermediate Scale Quantum 
systems (ONISQ)
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Amazon Braket for QAOA

Let’s go to Amazon Braket

https://console.aws.amazon.com/braket
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https://console.aws.amazon.com/braket

