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; Minor Embedding - Example

min __ z12z, + 2,23 + 232 Z
2t is A 2; 223 1232 A 1
1 1
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original problem stable
Solution: Make it a factor of the Q coefficients P
Chains can Can dilute other
break coefficients
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; Minor Embedding - Example

From our main example

—46. 0. 0. 48. 48. 48. 0. 48. 48. 48. 48.
0. —44. 0. 48. 0. 48. 48. 0. 48. 48. 48.
0. 0. —44. 0. 48. 0. 48. 48. 48. 48. 48.
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48. 0. 48. 48. —92. 48. 48. 96. 96. 96. 96.
48. 48. 0. 96. 48. —92. 48. 48. 96. 96. 96.
0. 48. 48. 48. 48. 48. —91. 48. 96. 96. 96.
48. 0. 48. 48. 96. 48. 48. —92. 96. 96. 96.
48. 48. 48. 96. 96. 96. 96. 96.—139. 144, 144.
48. 48. 48. 96. 96. 96. 96. 96. 144.—138. 144,
48. 48. 48. 96. 96. 96. 96. 96. 144. 144.-139.

And embed it into a Chimera graph
(subgraph of the Chip)

Notice that we need to “duplicate’
certain variables into several qubits
This step is non-trivial:

Either use heuristic methods or
solve highly constrained problem

Best embeddingin 1000 heuristicruns Full graph embedding
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; Solution via Enumeration

Before presenting the solution using QA let’s return to our example
If we enumerate all solutions for the QUBO, we obtain the following profiles

6000 - T
0.0175 |
5000 - 0.0150
4000 2 0.0125H
U
> e
o Z 0.0100H
< 3000 1 e
w °
£ 0.0075
2000 -
0.0050 4
1000 - 0.0025 |
0 . 0.0000

bitstring for solution

Objective function

The “infeasible” solutions are heavily penalized and randomly sampling is not an
option

Carnegie Mellon University S
Tepper SChOOl Of BUS'HeSS William Larimer Mellon, Founder S C PD



Z Y/Solution via Simulated P
/ Annealing

Using classical Simulated Annealing with the default parameters increases the probability

of find the optimal solution from 211 to 0.25 and a feasible solution to almost 1
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Objective function
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The “infeasible” solutions are heavily penalized and randomly sampling is not an option
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olution via Quantum Annealing

Using Quantum Annealing with the default parameters (annealing time, chain strength)
results on probability of find the optimal solution of 5/10000 and feasible of 15/10000
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bitstring for solution
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V/Quantum Annealing tuning

2

t=200us

In Quantum Annealing we analyzed two different factors, the chain strength and the

annealing time.

Our main concern is maximizing the probability of success (feasible and optimal)

Solutions found fraction vs. chain strength (t_ann = 200)

Random Embedding optimal
Random Embedding feasible
Best Embedding optimal
Best Embedding feasible
Full Embedding optimal

Full Embedding feasible

0.8 +

digpsd

Feasible solutions found

1072 10~} 10°

Chain break fraction vs. chain strength (t_ann = 200)
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Chain strength (factor of maximum coefficient in Q)
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V/Quantum Annealing tuning
/ t=20pus

In Quantum Annealing we analyzed two different factors, the chain strength and the
annealing time.
Our main concern is maximizing the probability of success (feasible and optimal)

Solutions found fraction vs. chain strength (t_ann = 20) Chain break fraction vs. chain strength (t_ann = 20)
-@- Random Embedding optimal ® Random Embedding
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081 _@~ Best Embedding feasible ‘ o
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:
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2 3 :
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0.0 4 ‘ ) e o
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V/Quantum Annealing tuning
/ t=2us

In Quantum Annealing we analyzed two different factors, the chain strength and the
annealing time.
Our main concern is maximizing the probability of success (feasible and optimal)

Solutions found fraction vs. chain strength (t_ann = 2) Chain break fraction vs. chain strength (t_ann = 2)

-@®- Random Embedding optimal ® Random Embedding
~®~- Random Embedding feasible l ® Best Embedding
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; Quantum Annealing tuning

(&

Longer annealing times and chain strengths of the same order of magnitude as max(Q) are
beneficial for this instance. The best embedding proved to be better than the random or full
embeddings.
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yyAmazon Braket for Quantum

; Annealing

Let’s go to Amazon Braket

https://console.aws.amazon.com/braket

Carnegie Mellon University
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yyBenchmarking and parameter

2

setting

p

REPORT

C(N)  speedupas afunction | Defining and detecting quantum speedup
SN =am)

) of problem size

+ See all authors and affiliations
Science 25 Jul 2014

DOI: 10.1126/science. 1252319

Provable Quantum Speedup (e.g. Grover)

Strong Quantum Speedup (e.g. Shor)

Quantum Speedup (potential, limited)

-

\_

\

In the real world what you care about is
«speedup at application scale» for your
problem of interest.

J
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Vol. 345, Issue 6195, pp. 420-424

Troels F. Rennow’, Zhihui Wang??, Joshua Job®*, Sergio Boixo®%, Sergei V. Isakov’, David Wecker®, John M. Martinis®, Dan...

F -I Suboptimal
5t| 4 Optimal

Linear problem size v N

FIG. 2. Pitfalls when detecting speedup. Shown is the
speedup of SQA over SA, defined as the ratio of median time
to find a solution with 99% probability between SA and SQA.
Two cases are presented: a) both SA and SQA run optimally
(i.e., the ratio of the true scaling curves shown in Figure 1),
and there is no asymptotic speedup (solid line). b) SQA is run
suboptimally at small sizes by choosing a fixed large annealing
time £, = 10000 MCS (dashed line). The apparent speedup
is. however, due to suboptimal performance on small sizes
and not indicative of the true asymptotic behavior given by
the solid line, which displays a slowdown of SQA compared
to SA.
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/ ow to do a benchmark study

More work to do, think Congrats, you achieved
1. Set up the quantum algorithm on the QPU  how to improve limited quantum speedup
with some initial parameters f f
2. Run it a number of times and process the PREN PREN
performance collecting the statistics of > >
distributi , Do you beat Bo you beat ™~ |
Istribution » | some good > 7 all good S
“« | classical P/ | classical v
3. If performance is not acceptable, use the N | methods? i S| methods? 7
7’
distribution to choose new parameters S e S o
. . . N\ N
(might involve processing) N7 N7
— Repeat 1-3 until satisfaction
4. Process final result and measure resource <
used (time, energy) s
— Repeat 1-4 for many benchmarking Congrats, you Is your performahcg
. e achieved so much better thathit
instances and collect distribution of :
quantum ~@—| would be crazy to do it
performance. supremacy without a QC?
\ v
. . 7’
5. Compare against best classical method on NG U7

available hardware (time, energy)

Congrats, you
Carnegie Mellon University achieved quantum

Teppe r SChOOl Of BUS'DGSS William Larimer Mellon, Founder advantage 14 C PD
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; ow to do a benchmark study

4| The benchmarking question is: once | decide how
to run, what is the quality of a solution that | can Fastatice
expect for a random new instance with a given generator i ook Tabie
4 confidence? g[)l(l) A
q'
performance collecting the statistics of
distribution 11 o
3.  If performance is not acceptable, use the Pre-processing =" !
distribution to choose new parameters 7 l
(might involve processing) lan E
— Repeat 1-3 until satisfaction !
resource 1
i run ]’ conslraints ]
4. Process final result and measure resource (7, o) 2(m,q) ;
used (time, energy) O l 7/ /
— Repeat 1-4 for many benchmarking K
instances and collect distribution of ¥
performance. Post-processing  |4--""
| )
5. Compare against best classical method on Repeat M >> 1 times \

available hardware (time, energy) (E) = test(c,q)

Carnegie Mellon University
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g/How to do a benchmark study

1. | The benchmarking question is: once | decide Expectation value of best found after N 1ID
how to run, what is the quality of a solution that runsl frﬁ';] one '“fgarﬂgse F560 runs
| can expect for a random new instance with a |
o | given confidence?
performance collecting the statistics of
distribution
- 2
3. | If performance is not acceptable, use the CCD * Best Value found with
distribution to choose new parameters =N N o )
(might involve processing) o % 90% C( nfidence (CDF) as
— Repeat 1-3 until satisfaction LE C a fu ncfion of runs
4. | Process final result and measure resource 8
used (time, energy) @ = .
— Repeat 1-4 for many benchmarking —_— *
instances and collect distribution of ‘ f n
performance. , f—

Probébility (Norma‘lized)
5. Compare against best classical method on

1 _ L L N L N
available hardware (time, energy) E(Yy) = Z [(Zp(xr)> — ( Z p(:I:T)) ] Tk

k=1 r=k r=k+1

Carnegie Mellon University
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g/How to do a benchmark study

1.  Set up the quantum algorithm on the QPU
with some initial parameters A

Obtain the profile across the benchmark set for a
random instance of the set

Pre/post
processing
overhead

\

\'  Parameter
\ optimization
\ strategy 1

2. Run it a number of times and process the
performance collecting the statistics of
distribution

3. If performance is not acceptable, use the
distribution to choose new parameters
(might involve processing)

— Repeat 1-3 until satisfaction

4. Process final result and measure resource
used (time, energy)

On a random instance 90% probability

— Repeat 1-4 for many benchmarking = . Parameter
instances and collect distribution of S 5‘@,{. '\~\. . optimization
performance. > ’/)9 .. strategy 2
5 (4 .
| | 2 4 " Global
5. Compare against best classical method on ¢ /)Q) oba
available hardware (time, energy) § | Optimum
0 >

Time
Carnegie Mellon University

Tepper SChOOl Of BUSIHESS William Larimer Mellon, Founder 17 C PD
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Example benchmarkings

O Time-to-Bit-Error-Rate 10® (From
“Benchmarking a quantum annealing
processor with the time-to-target metric”
https://arxiv.org/pdf/1508.05087.pdf )

O Time-to-solution (From “Demonstration
of a scaling advantage for a quantum
annealer over simulated annealing”
https://arxiv.org/pdf/1508.05087.pdf )

O Time-to-Bit-Error-Rate 10® (From

“Leveraging Quantum Annealing for
Large MIMO Processing in Centralized
Radio Access Networks”
https://arxiv.org/pdf/2001.04014.pdf )

Carnegie Mellon University

Tepper School of Business
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g/Universal Quantum Computing

A quantum computer is UNIVERSAL if its instruction set allows the implementation of any
algorithm allowed by quantum mechanics.

any @) > |y

Some quantum algo that |
can program on the QPU

The time-evolution of the Ising model in a transverse field (Quantum Annealing as implemented in
D-Wave) is NOT universal. However the general AQC procedure is universal (need more complex Hp
and H).

Why you might want a Universal Quantum Computer?

(1)  Simulation of Quantum Systems

(2) Flexibility of implementation of multiple e ™
quantum algorithms (e.g. Grover/Shor) . o
(3) Exploit all the power of quantum mechanics For quantum advantage in optimization
(4) Making sure that what you do is not heuristics, universality is not necessarily
classically simulatable efficiently required (the final state we are searching
is classical).
- /

Carnegie Mellon University
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V/Gate-Model and Quantum
/ Circuits

The gate-model is a simple way to break down the quantum |0}, X —P—~P H
coherent operations we use in quantum computing.

Q - _@; @
* b= GATE ity
] _G GATE _*&M/' ;

B
¢ | ) o ‘@“— o2 T Elgd

Y |z2) | H} Repo ly2)
GATE | |GATE for) [Baa] 1)
time Reminder: every operation on a N
> qubit system is mathematically
Uu=u_.U,. |ABC) equivalent to multiplying a unitary
AB

matrix of 2Nx2N to a normalized vector.

— + + + = you cannot keep track numerically of
Upg IABC? = y/5ol00C) +yy|01C) + [ 10C2 + v, [11C) the amplitudes of large circuits.

ac Upg IABC) = y55 Ugc [00C) + o, Up [01C) + vy Up [10C) + v, Ug [11C)
= \|1000|000> + \|/001|001> + \|1010|010> + \|!011|011> + \y100|100> + \|l101|101> + \|I110|110> + \|!111|111>

Carnegie Mellon University
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V/Quantum Approximate P

/ Optimization Algorithm

QUANTUM ANNEALING
MIT-CTP/4610
14 ' : ' - : N :
A Quantum Approximate Optimization Algorithm
12}
’I:l‘ Edward Farhi and Jeffrey Goldstone
== 10 Center for Theoretical Physics
9 Massachusetts Institute of Technology
N Cambridge, MA 02159
D 6l o
@ Sam Gutmann
e 4+
L
2t

= QAOA aims to implement (a)diabatic transitions
coherent operations more flexibly than AQC (digitally).

0 L
0 02 ) 044 06 038 1 = For infinite circuit this is at least as powerful as AQC.

= For finite circuit its power is unknown in general.

c c

[e) o {v3} o—{ No *—1{ V% > Zs . (Yo, } *

"é E Yy ] }, ‘\ Yo l-e—d{Zon. -+ o -
c g_ S g ¥3 }-@V-e—{ NJ P D—eo-{ Z, - Ye .
X [0} X c?) o) {¥3 }e-{Xe. - {Von, }+-{Zn |14 [T
= O ﬁ = 9 o ) (e g e (% s i "." .

g % Y3 —o—-{ Xa .‘] 1o, i Zo. —o—a> (Vo |-+

time i E ) o[ Xo, e} b —o-{Z, . Ye .
) &1 Na, 9 ) >4 Zs., { Yo,
Carnegie Mellon University bt
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V/Quantum Approximate P

/ Optimization Algorithm: Example

o+ H H H
10) — — 35) —H =S - = | ix the amplitudes by a transverse field rotation
55 - —F =) exp(ipX) on each qubit (arbitrary parameter)
= (7"/2)-1 Y1s(B1y1)
l0> - - u |\|I>mix(1) (2 ) Zs Bls(Bl,yl)e S>
\
Now if you measure, the probability of a bitstring
depends both on y and B in a non-linear way.
J
Phase separation
Initialization operator dependent m— ] —
operator on a parameter y, (HH HlI You need to
. . '| I' ™ 'I:I' schedule the
Exercise R (-n/2)R (n)|0) = (|0>+]1))N2 exp(ipZ,Z,) |s1sz) = glPs1s2 |s1sz) D < M |} gatesfor
_ Lo _ | v J | | U every term of
lin)= ﬁZ%q |solution(n)) Logical 2-qubit gate representing the the objective
z Ising interaction 'l:" M ™ function !

[W)Nqubits = \/— Zn 1 e*o[solution(n))

Carnegie Mellon University
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V/Quantum Approximate P

/ Optimization Algorithm: Example

4 H H H F 4 HXE
N HEHASHSF 1 %HKE
= Q S o =
>S5 ) D ) )

0) — — — — : R — Xk

V2 qaoe(p) = AP BB 1By Bp,yp)eirls(ﬁm’mm"“ b0 S )
4

Now if you measure, the probability of a bitstring depends both on y
and B in a non-linear way.

It is exponentially difficult to predict or simulate the probability
IB,..(B,v,B,7, B, yp)lz to find the optimal unknown solution s*
\_ J

For p=+« you can map this evolution to AQC; discrete becomes continuous; so you know how to
do it. For finite p there is currently not a lot of guidance, big sector of research.

The search over the parameter space y and B is done heuristically (e.g. Gradient descent)

Carnegie Mellon University
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Recent Results: QAOA

Quantum Approximate Optimization of Non-Planar Graph Problems

on a Planar Superconducting Processor

Google AI Quantum and Collaborators®
(Dated: April 10. 2020)

Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle

Zhi-Cheng Yang,' Armin Rahmani,™ Alireza Shabani,* Hartmut Neven," and Claudio Chamon'

Low depth mechanisms for quantum optimization

Jarrod R. McClean,'' * Matthew P. Harrigan,! Masoud Mohseni,! Nicholas C. Rubin,! Zhang
Jiang.! Sergio Boixo,! Vadim N. Smelyanskiy,' Ryan Babbush,' and Hartmut Neven'
' Google Research, 340 Main Street S

Quantum Approximate Optimization Algori T ance, Mechanism, and

Implementation on Near-Term Devices

Leo Zhou,''* Sheng-Tao Wang,'*! Soonwon Choi,'? Hannes Pichler.*! and Mikhail D. Lukin’

DARPA Optimization with Noisy

1.0 -
n > 10 Hardware Grid
0.8
£ -
QE —4— Noiseless
=< 06 X
= —4— Experiment
)
= #
€ 0.4 M
0 -—
= 50% &
0.2 o
c
2
©
0.0° Lo% B
1 2 3 < 5 u
Reference |Date  |Problem topology  [A(G)| n | p |Optimization
Otterbach et al. [22]]2017-12 |Hardware 3 19 1 Yes
Qiang et al. [27] 2018-08 |Hardware 1 2 1 No
Pagano et al. [26] |2019-06 |Hardware' (system 1)| n |12, 20| 1 Yes
Hardware' (system 2)| n |20-40(1-2% No
Willsch et al. [23]  |2019-07 |Hardware 3 8 1 No
Abrams et al. [21] |2019-12 |Ring 2 4 1 No
Fully-connected n No
Bengtsson et al. [27]]|2019-12 |Hardware 1 2 1,2 Yes
This work Hardware 4 |2-23| 15 Yes
3-regular 3 4-22 | 1-3 Yes
Fully-connected n 3-17 | 1-3 Yes

Intermediate Scale Quantum
systems (ONISQ)

DARPA ONISW

From the Quantum Approximate
Optimization Algorithm to a
Quantum Alternating Operator Ansatz

Stuart Hadfield >3, Zhihui Wang 2, Bryan O'Gorman !4, Eleanor G. Rieffel !, Davide

Carnegie Mellon University

Tepper School of Business

William Larimer Mellon, Founder

Venturelli * and Rupak Biswas '
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;/Amazon Braket for QAOA

Let’s go to Amazon Braket

https://console.aws.amazon.com/braket

Carnegie Mellon University
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